Crafting Adversarial Examples For Speech Paralinguistics Applications
نویسندگان
چکیده
Computational paralinguistic analysis is increasingly being used in a wide range of applications, including securitysensitive applications such as speaker verification, deceptive speech detection, and medical diagnostics. While state-ofthe-art machine learning techniques, such as deep neural networks, can provide robust and accurate speech analysis, they are susceptible to adversarial attacks. In this work, we propose a novel end-to-end scheme to generate adversarial examples by perturbing directly the raw waveform of an audio recording rather than specific acoustic features. Our experiments show that the proposed adversarial perturbation can lead to a significant performance drop of state-of-the-art deep neural networks, while only minimally impairing the audio quality.
منابع مشابه
Show-and-Fool: Crafting Adversarial Examples for Neural Image Captioning
Modern neural image captioning systems typically adopt the encoder-decoder framework consisting of two principal components: a convolutional neural network (CNN) for image feature extraction and a recurrent neural network (RNN) for caption generation. Inspired by the robustness analysis of CNN-based image classifiers to adversarial perturbations, we propose Show-and-Fool, a novel algorithm for ...
متن کاملEAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Recent studies have highlighted the vulnerability of deep neural networks (DNNs) to adversarial examples a visually indistinguishable adversarial image can easily be crafted to cause a well-trained model to misclassify. Existing methods for crafting adversarial examples are based on L2 and L∞ distortion metrics. However, despite the fact that L1 distortion accounts for the total variation and e...
متن کاملTowards Imperceptible and Robust Adversarial Example Attacks against Neural Networks
Machine learning systems based on deep neural networks, being able to produce state-of-the-art results on various perception tasks, have gained mainstream adoption in many applications. However, they are shown to be vulnerable to adversarial example attack, which generates malicious output by adding slight perturbations to the input. Previous adversarial example crafting methods, however, use s...
متن کاملAdversarial Examples for Malware Detection
Machine learning models are known to lack robustness against inputs crafted by an adversary. Such adversarial examples can, for instance, be derived from regular inputs by introducing minor—yet carefully selected—perturbations. In this work, we expand on existing adversarial example crafting algorithms to construct a highly-effective attack that uses adversarial examples against malware detecti...
متن کاملTowards Crafting Text Adversarial Samples
Adversarial samples are strategically modified samples, which are crafted with the purpose of fooling a classifier at hand. An attacker introduces specially crafted adversarial samples to a deployed classifier, which are being mis-classified by the classifier. However, the samples are perceived to be drawn from entirely different classes and thus it becomes hard to detect the adversarial sample...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.03280 شماره
صفحات -
تاریخ انتشار 2017